International Journal of Engineering, Science and Mathematics

Vol. 11 Issue 12, December 2022,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: <u>http://www.ijesm.co.in</u>, Email: ijesmj@gmail.comDouble-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

NORM MINIMIZING ESTIMATION IN THE SET-INDEXED

STOCHASTIC PROCESSES

ARTHUR YOSEF

Tel Aviv-Yaffo Academic College, 2 RabenuYeruhamst., Tel Aviv-Yaffo, Israel

ABSTRACT

KEYWORDS:

:Set indexed stochastic process, norm minimizing estimation In this article, we present the norm minimizing estimation of a set indexed stochastic process $Y = \{Y_A : A \in \mathbf{A}\}$ (by a linear and a nonlinear function of another set indexed stochastic process $X = \{X_A : A \in \mathbf{A}\}$)of the future value Y_T in terms of limits of its past X_{A_n} and Y_{A_n} . In addition, we present the orthogonality principle. We prove with some assumptions that aset indexed norm minimizing estimation of *Y* is *X* if and only if Y - aX, *X* are orthogonal, when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$.

Copyright © 2022 International Journals of Multidisciplinary Research Academy. *All rights reserved.*

1. INTRODUCTION

In this article, we present the norm minimizing estimation method of a set indexed stochastic process by another set indexed stochastic process, when the set index A is a compact set collection on a topological space T. The choice of the collection A is critical: it must be sufficiently rich in order to generate the Borel sets of T, but small enough to ensure the existence of a continuous process defined on A.

We introduce a norm minimizing estimation f a set indexed stochastic process $Y = \{Y_A : A \in \mathbf{A}\}$ in terms of another set indexed stochastic process $X = \{X_A : A \in \mathbf{A}\}$ by a linear and a nonlinear function of *X*. We prove with some assumptions that a set indexed of *Y* by linear function of set indexed process is aX + b when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$ and b = 0, by nonlinear function of set indexed process is $\lim_{A \neq T} E[Y_A | X_A]$.

In addition, we present the orthogonality principle. We prove with some assumptions that aset indexed norm minimizing estimation of *Y* is *X* if and only if Y - aX, *X* are orthogonal, when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$.

Preliminaries

In the study, processes are indexed by an indexing collection \mathbf{A} (see [IvMe]) of compact subsets of a locally metric and separable space *T*. We use the definition of \mathbf{A} and notation from [IvMe] and all this section come from there:

Let (T, τ) be a non-void sigma-compact connected topological space. A nonempty class **A** of compact, connected subsets of *T* is called an indexed collection if it satisfies the following:

28	International Journal of Engineering, Science and Mathematics
	http://www.ijesm.co.in, Email: ijesmj@gmail.com

- a. $\emptyset \in \mathbf{A}$. In addition, there is an increasing sequence (B_n) of sets in \mathbf{A} s.t. $T = \bigcup_{n=1}^{\infty} B_n^{\circ}$.
- b. As closed under arbitrary intersections and if $A, B \in \mathbf{A}$ are nonempty, then $A \cap B$ is nonempty. If (A_i) is an increasing sequence in **A** and if there exists n such that $A_i \subseteq B_n$ for every *i*, then $\overline{\bigcup_i A_i} \in \mathbf{A}$.
- c. $\sigma(\mathbf{A}) = \mathbf{B}$ where **B** is the collection of Borel sets of *T*.

We will require other classes of sets generated by \mathbf{A} . The first is $\mathbf{A}(\mathbf{u})$, which is the class of finite unions of sets in \mathbf{A} . We note that $\mathbf{A}(\mathbf{u})$ is itself a lattice with the partial order induced by set inclusion. Let **C** consists of all the subsets of *T* of the form

$$C = A \setminus B, A \in \mathbf{A}, B \in \mathbf{A}(\mathbf{u})$$

A set-indexed stochastic process $X = \{X_A : A \in \mathbf{A}\}$ is additive if ithas an (almost sure) additive extension to $\mathbf{C}: X_{\emptyset} = 0$ and if $C, C_1, C_2 \in \mathbf{C}$ with $C = C_1 \cup C_2$ and $C_1 \cap C_2 = \emptyset$ then almost surely $X_C = X_{C_1} + X_{C_2}$. In particular, if $C \in \mathbf{C}$ and $C = A \setminus \bigcup_{i=1}^n A_i$, $A, A_1, \dots, A_n \in \mathbf{A}$ then almost surely

$$X_{\mathcal{C}} = X_{A} - \sum_{i=1}^{n} X_{A \cap A_{i}} + \sum_{i < j} X_{A \cap A_{i} \cap A_{j}} - \dots + (-1)^{n} X_{A \cap \bigcap_{i=1}^{n} A_{i}}.$$

We shall always assume that our stochastic processes are additive. We note that a process with an (almost sure) additive extension to C(u).

Norm minimizing estimation in set indexed stochastic processes

Definition 1.

(a) Let $A = \{A_n\}$ be an increasing sequence in **A**. We write $A_n \uparrow T$ (or, in short notation $A \uparrow T$) if $A_n \neq T$ for all n and $\overline{\bigcup_n A_n} = T$.

(b) We write $A \nearrow T$ if $A_n \uparrow T$ for all an increasing sequence $\{A_n\}$ in $T^{\uparrow} = \{\{A_n\}: A_n \uparrow T\}$

We introduce the estimation of a set indexed stochastic process $Y = \{Y_A : A \in \mathbf{A}\}$ in terms of another set indexed stochastic process $X = \{X_A : A \in \mathbf{A}\}$. Throughout this analysis, the optimality criterion will be the minimization of the norm value of the estimation.Let $X = \{X_A : A \in \mathbf{A}\}$, $Y = \{Y_A : A \in \mathbf{A}\}$ be a squareintegrable set indexed stochastic processes. We define the inner product:

$$\langle X, Y \rangle = \exists \lim_{A \to T} Cov(X_A, Y_A)$$

(In another words, for all $\{A_n\} \in T^{\uparrow}$ the limits are existing and equal). Easy to see that

$$\|X\| = \sqrt{\langle X, X \rangle}$$

is a semi-norm.

We define the equivalence relation on square-integrable set indexed stochastic processes:

$$||X - Y|| = 0 \qquad \Leftrightarrow \qquad X \approx Y$$

We denote the quotient setby *H* (In another words, $H = \{[X]_{\approx} : X \in L^2(A)\}$ then $[X]_{\approx}$ is an equivalence class). Now, we can define an inner product and a norm on *H*:

 $\langle X, Y \rangle_H = \langle X, Y \rangle$ and $||X||_H = \sqrt{\langle X, X \rangle_H}$

for all $X, Y \in H$ $(X \in [X]_{\approx}, Y \in [Y]_{\approx})$

Definition 2.

- a. Let X, Y be a random variables with finite variance. We say that estimation of Y is X if $E[(Y X)^2]$ is minimal (see [Pa]).
- b. Let $X, Y \in H$. We say that set indexed norm minimizing estimation of Y is X if $||X Y||_{H}^{2}$ is minimal.

Theorem 2. Let $X, Y \in H$ and $\lim_{A \neq T} E[X_A] = \lim_{A \neq T} E[Y_A] = 0$.

- a. Set indexed norm minimizing estimation of *Y* by constant set indexed process X = c when c = 0.
- b. Set indexed norm minimizing estimation of *Y* by linear function of set indexed process is aX + b when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$ and b = 0.
- c. Set indexed norm minimizing estimation of Y by nonlinear function of set indexed process $islim_{A,T} E[Y_A|X_A]$.

Proof.

- a. Define $g(c) = ||Y c||_H^2 = \lim_{A \neq T} E[Y_A c]^2$. Clearly, g(c) is minimum if $g'(c) = -2\lim_{A \neq T} E[Y_A c] = 0$. Then c = 0 for $A \neq T$.
- b. For a given *a*, set indexed norm minimizing estimation of Y aX is a constant set indexed process. Then from (a) we get: b = 0.

Define

$$g(a) = ||Y - aX||_{H}^{2} = \lim_{A \neq T} E[Y_{A} - aX_{A}]^{2} =$$

 $= \langle Y, Y \rangle_{H} - 2a \langle X, Y \rangle_{H} + \langle X, X \rangle_{H} a^{2}.$ Clearly, g(a) is minimum if g'(a) = 0. Then $a = \frac{\langle X, Y \rangle_{H}}{\langle X, X \rangle_{H}}.$

c. We must find the function g(x) such that $\|Y - g(X)\|_{H}^{2} = \lim_{A \neq T} E[(Y_{A} - g(X_{A}))^{2}]$ is minimum. $\lim_{A \neq T} E[(Y_{A} - g(X_{A}))^{2}] = \lim_{A \neq T} \iint_{\Re^{2}} [y - g(x)]^{2} dF_{Y_{A}, X_{A}}(x, y).$ But $F_{Y_{A}, X_{A}}(x, y) = F_{X_{A}}(x)F_{Y_{A}|X_{A}}(y),$ then

$$\|Y - g(X)\|_{H}^{2} = \lim_{A \neq T} \int_{-\infty}^{\infty} dF_{X_{A}}(x) \int_{-\infty}^{\infty} [y - g(x)]^{2} dF_{Y_{A}|X_{A}}(y)$$

The integrands above are positive. Hence $||Y - g(X)||_{H}^{2}$ is minimum if the inner integral is minimum for every *x*. Hence it is minimum if g(x) is constant. Then from (a) we get:

$$g(x) = \lim_{A \nearrow T} \int_{-\infty}^{\infty} y dF_{Y_A \mid X_A}(y) = \lim_{A \nearrow T} E[Y_A \mid x]. \Box$$

Theorem 3. (The orthogonality principle) Let $X, Y \in H$ and $\lim_{A \neq T} E[Y_A] = \lim_{A \neq T} E[X_A] = 0$. $||Y - aX||_H^2$ is minimal if and only if $\langle Y - aX, X \rangle_H = 0$.

(In other words, set indexed norm minimizing estimation of *Y* by linear function of set indexed process is aX when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$ and b = 0 if and only if $Y - aX \perp X$).

(Note: Two random variables are called orthogonal if E[XY] = 0. We shall use the notation $X \perp Y$ to indicate that X, Y are orthogonal).

Proof.

Based on Theorem 2(b), set indexed norm minimizing estimation of *Y* by linear function of set indexed process is aX + b when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$ and b = 0.

If we define

$$g(a) = ||Y - aX||_{H}^{2} = \lim_{A \neq T} E[Y_{A} - aX_{A}]^{2}$$

then

 $g(a) = \lim_{A \neq T} E[Y_A - aX_A]^2 = \lim_{A \neq T} E[Y_A^2] - 2a\lim_{A \neq T} E[X_A Y_A] + a^2 \lim_{A \neq T} E[X_A^2]$ Clearly, g(a) is minimum if g'(a) = 0. Then $\lim_{A \neq T} E[(Y_A - aX_A)X_A] = 0.$

Theorem 4. Let $X, Y \in H$. If the random variables X_A, Y_A are Gaussian (or X, Y are Brownian motions [BoSa, Da, Du, Fr, ReYo]) for all $A \in \mathbf{A}$ and $\lim_{A \neq T} E[Y_A] = \lim_{A \neq T} E[X_A] = 0$ then

Set indexed norm minimizing estimation of Y by linear function of set indexed process is equal to set indexed norm minimizing estimation of Y by nonlinear function of set indexed process.

(In other words, $\lim_{A \neq T} E[Y_A | X_A] = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H} \lim_{A \neq T} E[X_A]$).

Proof.

The random variables X_A , Y_A are normal for all $A \in \mathbf{A}$ and $\lim_{A \neq T} E[Y_A] = \lim_{A \neq T} E[X_A] = 0$. From Theorem 2(b) we get that, set indexed norm minimizing estimation of Y by linear function of set indexed process is aX + b when $a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}$ and b = 0. Then $X_A, Y_A - aX_A$ are uncorrelated since $\langle Y - xX_A \rangle_H$. $aX, X\rangle_H = 0$. But X_A, Y_A are normal then $X_A, Y_A - aX_A$ are independent. Then

$$\lim_{A \neq T} E[Y_A - aX_A | X_A] = \lim_{A \neq T} E[Y_A - aX_A] = \lim_{A \neq T} E[Y_A] - a\lim_{A \neq T} E[X_A] = 0$$

nd

and on the other hand

 $\lim_{A \neq T} E[Y_A - aX_A | X_A] = \lim_{A \neq T} E[Y_A | X_A] - a\lim_{A \neq T} E[X_A | X_A] = \lim_{A \neq T} E[Y_A | X_A] - \lim_{A \neq T} X_A$ and from that we get,

 $\lim_{A \neq T} E[Y_A | X_A] = a \lim_{A \neq T} E[X_A] \text{ when } a = \frac{\langle X, Y \rangle_H}{\langle X, X \rangle_H}. \Box$

References

[BoSa] Borodin, A.B., Salminen, P., Handbook of Brownian motion – Facts and	Formulae.	
Probability and Its Applications. BirkhäuserVerlag (1996).		
[Da] Dalang R. C., Level Sets and Excursions of Brownian Sheet, in Capasso V., Ivano	B.G., Dalang R.C.,	
Merzbach E., Dozzi M., Mountford T.S., Topics in Spatial Stochastic Processes,	Lecture Notes in	
Mathematics, 1802, Springer, 167-208, 2001.		
[Du] Durrett, R., Brownian motion and Martingales in Analysis. The Wadsworth	Mathematics	
Series. Wadsworth, Belmont, California (1971).		
[Fr] Freedman, D., Brownian motion and Diffusion. Springer, New York, Heidelberg,	Berlin (1971).	
[He] Herbin, E., Merzbach, E., A characterization of the set-indexed Brownian motion	by increasing	
paths. C. R. Acad. Sci. Paris, Sec. 1 343, 767–772 (2006).		
[IvMe] Ivanoff, G., Merzbach, E., Set-Indexed Martingales. Monographs on Statistics	and Applied	
Probability, Chapman and Hall/CRC (1999).		

[Pa] Papoulis A., Probability, random variables and stochastic processes, McGraw-Hill, 1965.

[ReYo] Revuz, D., Yor, M., Continuous Martingales and Brownian Motion. Springer, New York, Heidelberg, Berlin (1991).